Self-Assembled Charged Hydrogels Control the Alignment of Filamentous Actin

نویسندگان

  • Jung Hyun Hyun Park
  • Yujie Sun
  • Yale E. Goldman
  • Russell J. Composto
  • Jung Hyun Park
چکیده

We demonstrate a novel route to control attachment of filamentous actin (F-actin) on hydrogel films. By incorporating an amine-terminated silane, the hydrogel surface charge and surface topography are varied. With increasing silane content, F-actin reorients from perpendicular to parallel to the hydrogel surface, ceases to wobble, and forms mainly elongated or cyclic structures. F-Actin coverage reaches a maximum at 2.5 vol% silane and declines at higher silane content. This biphasic behavior is explained by the simultaneous increase in surface charge and the self-assembly of a micron scale pattern of positively charged islands. Our approach provides guidelines for constructing nanoscale tracks to guide motor proteins underlying nano-engineered devices such as molecular shuttles. Disciplines Engineering | Materials Science and Engineering Comments Suggested Citation: Park, J.H., Y. Sun, Y.E. Goldman and R.J. Composto. (2010). "Self-assembled charged hydrogels control the alignment of filamentous actin." Soft Matter. Vol. 6:5. pp. 915-921 © 2010 Royal Society of Chemistry http://dx.doi.org/10.1039/B918304C This journal article is available at ScholarlyCommons: http://repository.upenn.edu/mse_papers/184 Self-assembled charged hydrogels control the alignment of filamentous actin† Jung Hyun Park, Yujie Sun, Yale E. Goldman and Russell J. Composto* Received 4th September 2009, Accepted 30th November 2009 First published as an Advance Article on the web 21st December 2009 DOI: 10.1039/b918304c We demonstrate a novel route to control attachment of filamentous actin (F-actin) on hydrogel films. By incorporating an amine-terminated silane, the hydrogel surface charge and surface topography are varied. With increasing silane content, F-actin reorients from perpendicular to parallel to the hydrogel surface, ceases to wobble, and forms mainly elongated or cyclic structures. F-Actin coverage reaches a maximum at 2.5 vol% silane and declines at higher silane content. This biphasic behavior is explained by the simultaneous increase in surface charge and the self-assembly of a micron scale pattern of positively charged islands. Our approach provides guidelines for constructing nanoscale tracks to guide motor proteins underlying nano-engineered devices such as molecular shuttles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-step control over self-assembled hydrogels of peptide-derived building blocks and a polymeric cross-linker.

We present a detailed study of self-assembled hydrogels of bundled and cross-linked networks consisting of positively charged amyloid-like nanofibers and a triblock copolymer with negatively charged end blocks as a cross-linker. In a first step small oligopeptides self-assemble into macrocycles which are held together by reversible disulfide bonds. Interactions between the peptides cause the ma...

متن کامل

Multi-responsive and tough hydrogels based on triblock copolymer micelles as multi-functional macro-crosslinkers.

Multi-stimuli responsive hydrogels are synthesized using self-assembled nanomicelles of Pluronic F127 diacrylate triblock copolymer as non-covalent macro-crosslinkers to in situ copolymerize with acrylamide and methyl chloride quaternized N,N-dimethylamino ethylacrylate monomers, generating positively charged hydrogels. These hydrogels showed high strength, toughness, and outstanding fatigue re...

متن کامل

Microchannel systems in titanium and silicon for structural and mechanical studies of aligned protein self-assemblies.

We report a technique for the alignment of self-assembled protein systems, such as F-actin bundles and microtubules, in a surface-modified titanium or silicon microfluidic device. Assembling filamentous protein systems in a confined geometry produces highly aligned samples for structural and mechanical studies. Biomolecular self-assembly can be investigated in a controlled fashion under differe...

متن کامل

Responsive Hydrogels from Associative Block Copolymers: Physical Gelling through Polyion Complexation

The present review article highlights a specific class of responsive polymer-based hydrogels which are formed through association of oppositely charged polyion segments. The underpinning temporary three-dimensional network is constituted of hydrophilic chains (either ionic or neutral) physically crosslinked by ion pair formation arising from intermolecular polyionic complexation of oppositely c...

متن کامل

Biological polyelectrolyte complexes in solution and confined on patterned surfaces

In the first part of this paper we describe recently discovered structures in self-assemblies of charged membranes complexed with the biological polyelectrolyte DNA. These complexes are currently used in medical applications of non-viral gene delivery. The second part of the paper will describe entirely new experiments where liquid crystal and biological polymers are confined on lithographicall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016